Anomalous Surplus Energy Transfer Observed with Multiple FRET Acceptors

نویسندگان

  • Srinagesh V. Koushik
  • Paul S. Blank
  • Steven S. Vogel
چکیده

BACKGROUND Förster resonance energy transfer (FRET) is a mechanism where energy is transferred from an excited donor fluorophore to adjacent chromophores via non-radiative dipole-dipole interactions. FRET theory primarily considers the interactions of a single donor-acceptor pair. Unfortunately, it is rarely known if only a single acceptor is present in a molecular complex. Thus, the use of FRET as a tool for measuring protein-protein interactions inside living cells requires an understanding of how FRET changes with multiple acceptors. When multiple FRET acceptors are present it is assumed that a quantum of energy is either released from the donor, or transferred in toto to only one of the acceptors present. The rate of energy transfer between the donor and a specific acceptor (k(D-->A)) can be measured in the absence of other acceptors, and these individual FRET transfer rates can be used to predict the ensemble FRET efficiency using a simple kinetic model where the sum of all FRET transfer rates is divided by the sum of all radiative and non-radiative transfer rates. METHODOLOGY/PRINCIPAL FINDINGS The generality of this approach was tested by measuring the ensemble FRET efficiency in two constructs, each containing a single fluorescent-protein donor (Cerulean) and either two or three FRET acceptors (Venus). FRET transfer rates between individual donor-acceptor pairs within these constructs were calculated from FRET efficiencies measured after systematically introducing point mutations to eliminate all other acceptors. We find that the amount of energy transfer observed in constructs having multiple acceptors is significantly greater than the FRET efficiency predicted from the sum of the individual donor to acceptor transfer rates. CONCLUSIONS/SIGNIFICANCE We conclude that either an additional energy transfer pathway exists when multiple acceptors are present, or that a theoretical assumption on which the kinetic model prediction is based is incorrect.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Impact of Heterogeneity and Dark Acceptor States on FRET: Implications for Using Fluorescent Protein Donors and Acceptors

Förster resonance energy transfer (FRET) microscopy is widely used to study protein interactions in living cells. Typically, spectral variants of the Green Fluorescent Protein (FPs) are incorporated into proteins expressed in cells, and FRET between donor and acceptor FPs is assayed. As appreciable FRET occurs only when donors and acceptors are within 10 nm of each other, the presence of FRET c...

متن کامل

Quantum Dots as Acceptors in FRET-Assays Containing Serum

Quantum dots (QDs) are common as luminescing markers for imaging in biological applications because their optical properties seem to be inert against their surrounding solvent. This, together with broad and strong absorption bands and intense, sharp tuneable luminescence bands, makes them interesting candidates for methods utilizing Förster Resonance Energy Transfer (FRET), e. g. for sensitive ...

متن کامل

Extending the range of FRET—the Monte Carlo study of the antenna effect

The problem of extending the utilizable range of Förster resonance energy transfer (FRET) is of great current interest, due to the demand of conformation studies of larger biological structures at distances exceeding typical limiting distance of 100 Å. One of the ways to address this issue is the use of so-called antenna effect. In the present work, the influence of the antenna effect on the FR...

متن کامل

Time-Resolved Analysis of a Highly Sensitive Förster Resonance Energy Transfer Immunoassay Using Terbium Complexes as Donors and Quantum Dots as Acceptors

CdSe/ZnS core/shell quantum dots (QDs) are used as efficient Förster Resonance Energy Transfer (FRET) acceptors in a time-resolved immunoassays with Tb complexes as donors providing a long-lived luminescence decay. A detailed decay time analysis of the FRET process is presented. QD FRET sensitization is evidenced by a more than 1000-fold increase of the QD luminescence decay time reaching ca. 0...

متن کامل

Imaging Protein-Protein Interactions By Multiphoton FLIM

We demonstrate the applicability of time-correlated single photon counting multiphoton microscopy to the spatiotemporal localisation of protein-protein interactions in situ. An Example of a new fluorescent protein variant with enhanced properties are given and the development of a FRET biosensor for simultaneous measurement of multiple intraand inter-molecular interactions is illustrated by exp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009